SHORT PAPER

Herpes Simplex Encephalitis in a Domestic Rabbit (Oryctolagus cuniculus)

P. Grest, P. Albicker*, L. Hoelzle*, P. Wild† and A. Pospischil

Institute of Veterinary Pathology, *Institute of Veterinary Bacteriology, and †Institute of Veterinary Anatomy, University of Zurich, 8057 Zurich, Switzerland

Summary

An adult domestic rabbit showing neurological signs was subjected to euthanasia. At necropsy, macroscopical lesions were absent. Histopathologically, extensive lesions were seen, particularly in the cerebral cortex. Non-suppurative meningitis was present and there was lymphocytic and plasmacytic perivascular cuffing in the neuropil. The cerebral cortex showed extensive segmental neuronal and glial necrosis. Within the necrotic areas, large amphophilic intranuclear inclusion bodies were present in neurons and glial cells. Immunohistochemically, neurons and glial cells in the affected areas were labelled by polyclonal antibodies against both herpes simplex virus-1 (HSV-1) and HSV-2. The agent was classified as HSV-1 by polymerase chain reaction analysis. This is only the second reported natural case of herpes simplex infection in a rabbit.

Natural herpesvirus infections are rarely reported. A 1-year-old male dwarf rabbit, kept as a house pet without companion, was brought to the clinic in rabbits. Herpesvirus cuniculi causes subclinical disease in New Zealand White rabbits, with no macroscopical lesions; histologically, however, mononuclear infiltrates and intranuclear inclusion bodies are seen in the testis (interstitial cells), skin (endothelial cells) and cornea (epithelial cells) (Maré, 1974). Herpesvirus sylvilagus causes lymphocytic myocarditis and myositis, interstitial pneumonia and lymphoproliferative diseases in cottontail rabbits (Hesselton et al., 1988). A third, as yet unclassified, herpesvirus has been identified as the cause of a lethal disease in rabbits, characterized by haemorrhagic dermatitis, pneumonia, and necrotizing splenitis (Onderka et al., 1992). The rabbit is an important animal model for herpesvirus disease of other species, e.g. malignant catarrhal fever (Buxton et al., 1984), Aujeszky’s disease (Jakubik, 1977) and bovine herpesvirus type 5 infection (Chowdhury et al., 1997). In addition, the rabbit is an important model for human herpes simplex encephalitis (Schlitt et al., 1986). This paper reports an isolated case of a naturally occurring herpes simplex encephalitis in a domestic rabbit in Switzerland. To our knowledge, there has been only one other case worldwide (Weissenböck et al., 1997). A 1-year-old male dwarf rabbit, kept as a house pet without companion, was brought to the clinic with mild pruritus and restlessness. One week later the rabbit exhibited neurological symptoms (e.g. sudden running and tonic–clonic spasms) every 3 to 4 h. Later, the animal became laterally recumbent and was humanely destroyed. At necropsy, no macroscopical lesions were evident. Histologically, however, severe lesions were observed in the cerebral cortex, with prominent involvement of the temporal and parietal lobes. The meninges were mildly to moderately affected, and as yet unclassified, herpesvirus has been identified as the cause of a lethal disease in rabbits, characterized by haemorrhagic dermatitis, pneumonia, and necrotizing splenitis (Onderka et al., 1992). The rabbit is an important animal model for herpesvirus disease of other species, e.g. malignant catarrhal fever (Buxton et al., 1984), Aujeszky’s disease (Jakubik, 1977) and bovine herpesvirus type 5 infection (Chowdhury et al., 1997). In addition, the rabbit is an important model for human herpes simplex encephalitis (Schlitt et al., 1986). This paper reports an isolated case of a naturally occurring herpes simplex encephalitis in a domestic rabbit in Switzerland. To our knowledge, there has been only one other case worldwide (Weissenböck et al., 1997).
Herpes Simplex Encephalitis in a Rabbit

Fig. 1. Meninges: moderate, diffuse, non-purulent inflammatory infiltrate. Haematoxylin and eosin (HE). ×227.

Fig. 2. Cerebral cortex: acute neuronal and glial necrosis. HE. ×227.

Fig. 3. Cerebral cortex: intranuclear inclusion bodies in neurons. HE. ×570.

Fig. 4. Intranuclear nucleocapsids (approximately 100 nm in diameter). EM.

Fig. 5. Cerebral cortex: neurons and glial cells positively immunolabelled for HSV-1. Peroxidase-antiperoxidase technique. ×114.

Paraﬃn wax-embedded material was processed for electron microscopy (EM), which revealed intranuclear particles with the typical morphology of herpesvirus (Fig. 4). In addition, immunohistochemical examination was performed with polyclonal antibodies against herpes simplex virus type 1 (HSV-1) and 2 (Dako®, Zug, Switzerland). The peroxidase–antiperoxidase method with diaminobenzidine as chromogen was applied. Neurons and glial cells within the necrotic area were positively labelled with both antisera, showing a homogeneous brown staining of the cytoplasm and in some cases of the nucleus (Fig. 5). For the polymerase chain reaction (PCR), genomic DNA
the nervus olfactorius leads to focal lesions in the lobus temporalis and lobus frontalis. Similar lesions have been observed after intranasal inoculation with herpes simplex and subsequent reactivation of latent infections (Stroop and Schaefer, 1986). In the present case no lesions were evident in the brain stem or in the corpus geniculatum, and this would argue against trigeminal entry. The lesions were restricted to cortical areas of the lobus temporalis, lobus frontalis and lobus parietalis, suggesting infection through the bulbus olfactorius. The nasal mucosa would seem to offer a route for viral entry, since the ends of the olfactory cells, which are bipolar neurons, and their basal processes continue to the brain as axons of the nervus olfactorius.

A person with a herpetic infection was known to have had close contact with the rabbit described in this report, and may have provided the source of infection. Because it has been shown experimentally that rabbit to rabbit transmission sometimes occurs (Kaplan, 1969), there seems no reason why contact infection of rabbits from human beings should not also occur. As mentioned above, however, we are aware of only one other reported natural case of herpes simplex encephalitis in a rabbit. The absence of further cases is surprising, as rabbits are easily infected with herpes viruses experimentally, and large numbers of pet and laboratory rabbits live in close contact with human beings and would therefore seem to be at risk. Possibly, few rabbits with unexplained nervous symptoms are made available for histological examination, which is an essential step in diagnosis. Alternatively, horizontal transmission may, for unknown reasons, be a rare event.

References

Herpes Simplex Encephalitis in a Rabbit

[Received, June 19th, 2001]
[Accepted, January 7th, 2002]